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Part I

Minions
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Minors and (Concrete) Minions

A,B: sets. f : Ak → B.

m ∈ N, α : [k ]︸︷︷︸
:={1,...,k}

→ [m].

Def. fα defined by fα(x1, . . . , xm) := f (xα(1), . . . , xα(k)). ‘minor’ of f .
Obs. if α : [k ]→ [m], β : [m]→ [n], then

(fα)β = fβ◦α

Def. A function minion M is a subset of
⋃

k≥1 BAk

which is closed under taking minors. Aka concrete minion (on (A,B)).

Examples.

A = B = {0,1}, M = {πk
i | i ≤ k } =: Proj

For groups (graphs, structures) G and H,
the set Pol(G,H) of all homomorphisms from Gk to H, for all k .

For topological spaces S and T ,
the set of all continuous maps from Sk to T .
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Minion Homomorphisms, (Abstract) Minions

M, N: function minions.
ξ : M→ N is called minion homomorphism if

1 ξ preserves arities, and

2 ξ preserves taking minors, i.e.,
for every n,m ∈ N, α : [n]→ [m], and f ∈M of arity n:

ξ(fα) = ξ(f )α.

Def. An (abstract) minion is a multi-sorted algebra M with sorts M(1),M(2), . . .

and for each α : [n]→ [m] the operation α : M(n) → M(m) such that for every
α : [n]→ [m] and β : [m]→ [k ] and f ∈ M(n)

(fα)β = fβ◦α.

Expl. Every function minion is an abstract minion.

Rem. Every abstract minion arises as a function minion (requires proof).

Rem. May be viewed as functors from FinSet to Set.
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Special case: clones

B: a set.
Def. An (operation) clone C is a subset of

⋃
k≥1 BBk

which contains the projections and is closed under composition.

Expl 1. Pol(B) := Pol(B,B) for some structure B.
Expl 2. For an algebra B, the set of all term operations of B.

Aka concrete clone (on B).
Analogously as in the case of minions:
clone homomorphisms, (abstract) clones.

Expl. Clones over {0,1}
with respect to containment:
Post’s lattice

Next steps?

classify clones on larger domain sizes?

classify function minions on {0,1}, {0,1}?

 [∨ ,  ]

 

[∨ , c]

[∧ , →]

[∨ , q]

[∨,∧,0,1]

[∨,∧,0][∨,∧,1]

[∨,∧]
[d , →]

[d , →]

[∅]

[1] [0][c]

[0,1]

[c,0,1][∨]

[∨ , 1]

 [∨ , 0]

[∨,0,1]  [⊕][⊕']

[⊕,c]

[p]

 [q]

[∧,0,1]

[∧ , 1]

[∧ , 0]

   [∧]

 [ ]

[p , 0]

[→]

[q ]

 [p ]

 [p , 1]

[d ]

[m]

[m , c]

[d ,m]
 [d ]

Δ

Δ

Δ
3

3

3

4
Δ

Δ
4

[d , 1]3

[d , q ]4
Δ Δ

 [d , 1]Δ
4

[d , q ]3
Δ

[d , p ]3
Δ

 [d , c]3

[d , 0]3
  [d ,  ]3

 [d , q]3

[d , p]3
[d ,  ]4

[d ]4

 [d , q]4

*

*

*

*
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Expl 1. Pol(B) := Pol(B,B) for some structure B.
Expl 2. For an algebra B, the set of all term operations of B.

Aka concrete clone (on B).
Analogously as in the case of minions:
clone homomorphisms, (abstract) clones.

Expl. Clones over {0,1}
with respect to containment:
Post’s lattice

Next steps?

classify clones on larger domain sizes?

classify function minions on {0,1}, {0,1}?
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Clone Facts

Fact 1 (Yanov+Muchnik 1959) There are uncountably many operation clones
on {0,1,2}.

Fact 2 (B.+Vucaj+Zhuk 2023) There are uncountably many operation clones
on {0,1,2} up to clone homomorphism equivalence.
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Minion Facts

Fact 3 (Sparks 2019). There are uncountably many function minions
contained in

⋃
k {0,1}

{0,1}k
.

Fact 4 (Kazda+Moore 2019). Uncountable many even after factoring by
minion homomorphism equivalence.

Proposal: study clones on finite sets
up to minion homomorphism equivalence.
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Clones on Finite Sets Up To Minion Homomorphisms

C, D: clones on finite sets.
Put C ≤ D if there exists a minion homomorphism from C to D.

Resulting poset: Pfin.

Idea: If C contains a binary symmetric operation f such that

f (x , y) ≈ f (y , x)

and D does not, then there is no minion homomorphism from C to D.

Unique smallest element:
equivalence class of Proj.

Unique largest element: Const,
Equivalence class of all clones containing a constant operation.

Unique lower cover of Const: Idem,
Equivalence class of all idempotent clones with at least two elements.
(f idempotent if f̂ (x) := f (x , . . . , x) ≈ x)
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Clones on {0,1} Up To Minion Homomorphisms
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B+Vucaj’2020
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Subclones of Pol({0,1,2};C3) up to Minion
Homomorphisms

C3 :=
{
(0,1), (1,2), (2,0)

}
.
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Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?

“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Open Problems Part 1

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem?
“Rosenberg theorem for Pfin”

One of them has been solved recently...

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 12



Part 2

Theoretical Computer Science
Applications
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Homomorphisms

G = (V (G),E(G)), H = (V (H),E(H)).
f : V (G)→ V (H) is called a homomorphism
if for every (u, v) ∈ E(G) have (f (u), f (v)) ∈ E(H).
Write: G→ H if there exists a homomorphism from G to H.

K3

Obs/Def. A graph G is n-colourable
if and only if it has a homomorphism to Kn. (NP-hard for n ≥ 3).

CSP(H): class of all finite graphs G→ H.

Fact: If there is an efficient algorithm to decide CSP(H) (decision!),
there is also an efficient algorithm to compute f : G→ H for given G (search!)
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Promise CSPs

τ: finite set of relation symbols. e.g., {E}.
B, C: τ-structures e.g.: two graphs
Assumption: B → C.

Definition PCSP(B,C).
Input: A finite τ-structure A.
Answer Yes if A→ B.
Answer No if A 6→ C.

CSP(B)

B

CCSP(C)

A

A

A

YES

NO

?

Obs. PCSP(B,B) = CSP(B).

Variant: Find a homomorphism to C
under the promise that there is a homomorphism to B.

Might be harder than PCSP(B,C).

Example 1. B = K3, C = K4. NP-hard (Brakensiek, Guruswami 2016).
Example 2. B = K3, C = K5. NP-hard (Bulin, Krokhin, Opršal 2019).
Example 3. B = K3, C = K6. Complexity open.
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Reductions

If B ′ → B and C → C ′, then (B ′,C ′) is called relaxation of (B,C).

(B ′,C ′) is called (n-th) pp-power of (B,C) if
B ′ = Bn, C ′ = Cn, and the relations of B ′ and C ′ are
primitively positively definable︸ ︷︷ ︸

∃,∧,=

in B and C, resp.

(B,C) pp-constructs (B ′,C ′)
if (B ′,C ′) is a relaxation of a pp-power of (B,C).

B pp-constructs B ′ if (B,B) pp-constructs (B ′,B ′).

Fact.
If (B,C) pp-constructs (B ′,C ′) then PCSP(B ′,C ′) reduces to PCSP(B,C).

Consequence.
If B pp-constructs B ′ then CSP(B ′) reduces to CSP(B).
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Primitive Positive Constructions: Example 1

~C3 :=
(
{0,1,2} | {(0,1), (1,2), (2,0)}

)
has a pp construction in

~C6 :=
(
{0,1,2, . . . ,5} | {(x , y) | y = x + 1 mod 6}

)
:

∃u
(
E(x ,u)∧ E(u, y)

)

C6 C3C3+C3
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Primitive Positive Constructions: Example 2

~C9 has a pp construction in ~C3:

y1 y2 y3

x1 x2 x3

E(x1, y3)∧ y1 = x2 ∧ y2 = x3

C3 C9C9+C9+C9

0

1

2

000
001

011

111

112 122

222

220

200
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PCSPs and Minions

Pol(B,C) :=
⋃

k Bk → C. Function Minion
If B,C are finite: every function minion on (B,C) is of this form.

Example:

Pol(K3,K3), Pol(K6,K6): ‘small’. (essentially only automorphisms)

Pol(K3,K6): ‘large’. (6-colourings of K n
3 , for some n)

Theorem (Bulı́n, Barto, Krokhin, Opršal 2021).

For finite structures B,B ′,C,C ′ TFAE:

1 (B,C) pp-constructs (B ′,C ′)

2 there is a minion homomorphism from Pol(B,C) to Pol(B ′,C ′).

Consequence. For finite B,C, the computational complexity of PCSP(B,C)

only depends on Pol(B,C), viewed as an abstract minion!
In fact, even homomorphic equivalence preserves the complexity.
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PP-Definitions and Subalgebras

B: relational structure.
Pol(B): polymorphism clone of B. 1

2

3

4

5

0

B

A

A ⊆ B is subalgebra of Pol(B) :iff
f (a1, . . . ,an) ∈ A for all f ∈ Pol(B)

of arity n and a1, . . . ,an ∈ A.

Example: {0,1} is a subalgebra of B.

{0,1} has the following primitive positive definition in B:

φ(x) := ∃u
(
E(x ,u)∧ E(u, x)

)
Fact for finite B:
A ⊆ B is subalgebra of Pol(B) if and only if
A is primitively positively definable in B.
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PP-Definitions and Powers

A: relational structure.
Pol(A)d : clone with domain Ad and the operation(

(a1
1, . . . ,a

d
1 ), . . . , (a

1
k , . . . ,a

d
k )
)
7→ (

f (a1
1, . . . ,a

1
k ), . . . , f (a

d
1 , . . . ,a

d
k )
)

for each f ∈ Pol(A).

Fact.
Pol(A)d = Pol(Ad ;E1,2, . . . ,Ed−1,d )

where Ei,j := {(s, t) ∈ Ad | si = tj }.
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Reflections

A,B: τ-structures
with homomorphisms
h : A→ B and g : B → A.

f : Bn → B. A B

h

g f

f ∗ : An → A defined by

f ∗(x1, . . . , xn) := g(f (h(x1), . . . ,h(xn)))

Pol(A) contains

Refl(Pol(B)) := {f ∗ | f ∈ Pol(B)}

Observations.

f 7→ f ∗ is a minor-preserving map from Pol(B) to Pol(A).

Refl(Pol(B)) is in general not a clone, but still a minion.
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Observations.

f 7→ f ∗ is a minor-preserving map from Pol(B) to Pol(A).

Refl(Pol(B)) is in general not a clone, but still a minion.
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Wonderland

Theorem (‘Wonderland of reflections’,
Barto+Opršal+Pinsker 2015).
A, B: finite structures. Then:

B pp-constructs A⇔
Pol(A) ∈ Exp

(
Refl(Pfin(Pol(B)))

)
.

Note. Refl
(
Pfin(Pol(B))

)
contains HSPfin(Pol(B)).
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Hight-One Birkhoff

A height-one identity is an identity of the form s ≈ t
where s and t involve exactly one function symbol.

Example: f (x , y) ≈ f (y , x) (f is symmetric)
Example: m(y , y , x) ≈ m(x , y , y) ≈ m(x , x , x) (m is quasi-Maltsev)
Non-examples: f (x , x , x) ≈ x , f (f (x , y), z) ≈ f (x , f (y , z)).

Theorem (Barto, Opršal, Pinsker 2015). A,B: finite structures. TFAE:

1 Pol(A) ∈ Exp(Refl P(Pol(B))).

2 There exists a minion homomorphism from Pol(B) to Pol(A).

3 Every set of height-one identities that is satisfied in Pol(B)

is also satisfied in Pol(A).

Can be adapted to Pol(B,C) (Bulı́n, Barto, Krokhin, Opršal 2021).
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Connection with pp Constructions

A has pp construction in B if and only if
there exists minion homomorphism from Pol(B) to Pol(A).

Proof. A has pp construction in B iff
there exists M ∈ Refl Pfin(Pol(B)) such that M ⊆ Pol(A) iff
Pol(B) has minion homomorphism to Pol(A). �

Examples.

All polymorphisms of K3 are projections composed with S3.
In particular: f̂ has an inverse for every f ∈ Pol(K3).

ξ : Pol(K3)→ Proj : f 7→ (f̂ )−1 ◦ f

Corollary: K3 pp-constructs all finite structures.

B: a finite structure.
There exists a minion homomorphism from Pol(B) to Proj
if and only if B pp-constructs K3.
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Open Problems

Fact 1. Suppose that Pol(B,C) contains for every n ∈ N a function f such that
f = fσ for every σ ∈ Sn. Then Pol(B,C) can be solved in polynomial time.

Open Problem 1. For which minions M does M → Pol(B,C) imply
polynomial-time tractability for PCSP(B,C)?

Fact 2. Suppose that Pol(B,C)→ P2. Then PCSP(B,C) is NP-hard.

Open Problem 2. For which minions M does Pol(B,C)→ M imply
NP-hardness for PCSP(B,C)?

Fact 3 (Barto+Kozik 2012). Suppose that Pol(B) 6→ P2. Then there is a cyclic
f ∈ Pol(B) of some arity n ≥ 2, i.e., f satisfies f (x1, . . . , xn) ≈ f (x2, . . . , xn, x1).

Open Problem 3. Do we have similar statements for Pol(B,C)?

Fact 4 (Bulatov 2017, Zhuk’2017).
CSP(B) is in P or NP-hard for every finite structure B.

Open Problem 4. Classify the complexity of CSP(B) within P.
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Part III

Minions and
Finite Simple Groups
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Digraphs
B+Starke’22
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From Group Actions to Structures

G: permutation group on X .
SG: structure with domain X and for every g ∈ G the binary relation

{(x ,gx) | x ∈ X }.

P(G): disjoint union of all primitive actions of G (up to isomorphism).

Obs.

If G is finite, then P(G) is finite.

SP(Z/pZ) pp-interconstructible with Cp.

SG has a Maltsev polymorphism: the minority which projects which
equals the first projection if the three arguments are distinct.

Theorem (Meyer+Starke’2024).

Let B be a finite structure. Then either

P2 pp-constructs B, or

B pp-constructs T3 or SP(G) for some finite simple group G.
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From Group Actions to Linear Maltsev Conditions

G: permutation group on [k ].
ΣG: set of all identities of the form

f (x1, . . . , xk ) ≈ f (xg(1), . . . , xg(xk)), for g ∈ G

Examples:

ΣZ/pZ expresses the existence of p-cyclic operation.

ΣSn expresses the existence of (fully) symmetric operation of arity n.

Pol(Cp) 6|= ΣZ/pZ.

Lemma: G,H: finite simple groups.
Then Pol(SH) 6|= ΣP(G) if and only if G ' H.

Theorem (Meyer+Starke’2024).

In Pfin, the lower covers of Idem are precisely

{Pol(T3)} ∪ {Pol(SP(G)) | G finite simple group}
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Linear Maltsev Conditions

Confirming 2019 speculations
in the communication room of the Institut of Algebra:

Corollary. Let C be a clone on a finite set with

a quasi-Maltsev operation, and

fully symmetric operations of all arities.

Then C satisfies ‘all linear Maltsev conditions’
(equivalent: all sets of height-one identities that do not imply f (x) ≈ f (y))

Answers question of Vucaj and Zhuk in a strong way
(they asked it for totally symmetric operations of all arities ‘ts(n) ∀n’)
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Open Problems Revisited

1 Is ≤con a lattice?

2 What is the cardinality of Pfin? ω ≤ |Pfin| ≤ 2ω

3 What is the cardinality of the restriction of Pfin to clones on 3 elements?

4 Are there infinite ascending chains?

5 What are the maximal elements below Idem? Solved!

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 32



Part IV

Datalog Fragments
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Datalog

P3 = ({0,1,2}; {(0,1), (1,2)}).

Example. Datalog program Π for CSP(P3).

A(x) :− E(x , y) B(x) :− A(y),E(x , y)

A(y) :− B(x),E(x , y) Goal :− B(y),E(x , y)

E : EDB (extensional database predicate, ‘input’)
A,B,Goal: IDBs (intensional database predicates, ‘auxiliary’)

This program is:

monadic: all IDBs of arity 1

linear: ≤ 1 IDB per rule

arc: ≤ 1 EDB per rule

symmetric: if (ψ1 :−φ,ψ2) ∈ Π for IDBs ψ1, ψ2 then (ψ2:−φ,ψ1) ∈ Π.
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Classic Result and Conjecture

Theorem (Feder+Vardi 1998). Equivalent:

1 CSP(B) can be solved by monadic arc Datalog

2 Pol(B) |= ts(n) ∀n
3 B has tree duality: A→ B if all trees that map to A also map to B.

Conjecture (Zadori,Tesson,Dalmau). Equivalent:

1 CSP(B) can be solved by linear Datalog.

2 Pol(B) |= Kearnes-Kiss (a specific set of height-one identities)

3 B does not pp-construct Horn-SAT or (Zp ; +,1) for all primes p

4 B has bounded pathwidth duality

5 CSP(B) in NL (non-deterministic logspace)
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Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?

Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



Another Conjecture, Another Result

Conjecture (Egri,Dalmau,Larose,Tesson,Zadori). Equivalent:

1 CSP(B) can be solved by symmetric linear Datalog.

2 Pol(B) |= noname (a specific set of height-one identities)

3 B does not pp-construct st-Conn or (Zp ; +,1) for all primes p

4 CSP(B) in L (deterministic logspace)

Theorem (Carvalho+Dalmau+Krokhin 2010). Equivalent:

1 CSP(B) can be solved by linear monadic arc Datalog

2 Pol(B) |= n-k-abs(n, k) ∀n

f (x11, . . . , xnk ) ≈ f (y11, . . . , ynk ) if {S1, . . . ,Sn} = {T1, . . . ,Tn},

Si = {xi1, . . . , xik },Ti = {y11, . . . , yik }

f (S1,S2, . . . ,Sn) ≈ f (S2,S2, . . . ,Sn) if S2 ⊆ S1

3 B has caterpillar duality.

The ‘smallest natural Datalog fragment’?
Minions Manuel Bodirsky, Institut für Algebra, TU Dresden 36



The Smallest Natural Datalog Fragment

Symmetric linear arc monadic Datalog:

SLAM Datalog
Theorem (B+Starke’24). TFAE:

1 CSP(B) solved by SLAM Datalog
2 B has unfolded caterpillar duality
3 If Pol(B) 6|= Σ, then Σ |= f (x) ≈ f (y)
4 Every set of height one identities that is satisfies in Pol(P2) is also

satisfied in Pol(B)

5 Pol(P2)→ Pol(B)

6 P2 pp-constructs B
7 B is homomorphically equivalent to a structure with Maltsev and lattice

polymorphisms
8 Pol(B) |= quasi-Maltsev,n-k-abs ∀n, k
9 B does not pp-construct T3 or a SP(G) for some finite simple group G.
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Open Problems

Prove that every CSP that is not P-hard is in NC.
Resolve the NL conjecture!
Is even open when restricted to orientations of trees
(B.+Bulin+Starke+Wernthaler 2023)
There is a concrete tree with 16 vertices, whose CSP should be in NL,
but we cannot prove it (B.+Bulin+Starke+Wernthaler 2023)
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