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Randomly expanding structures

Randomly expanding hereditary classes
L,L′: disjoint relational languages;
C, C′: hereditary classes of finite labelled L and L′ structures (resp.);

H ⋆H ′ is the free superposition of H and H ′, so H ⋆H ′ ↾L= H
and H ⋆H ′ ↾L′= H ′;

For H a finite L-structure,

Struc(H, C′) = {H ⋆H ′|H ′ ∈ C′}.

Definition 1 (consistent random expansion, CRE(C, C ′))

A consistent random expansion of C by C′ assigns to each H ∈ C a
probability distrubution PH on Struc(H, C′) such that for H,G ∈ C,
ϕ : H → G an embedding and H ′ ∈ C′ such that |H| = |H ′|,

PH(H ⋆H ′) = PG(ϕ(H) ⋆ H ′).
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Randomly expanding structures

Invariant random expansions
When C is a Fraïssé class with Fraïssé limit M, CREs correspond to:

Definition 2 (Invariant random expansion, IRE(M, C ′))

Let M be a countable structure. An invariant random expansion of
M by C′ is an Aut(M)-invariant Borel probability measure on

Struc(M, C′) = {M ⋆N | Age(N) ⊆ C′}.
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Examples of random expansions

Exchangeability

Example 3 (Exchangeable structures)
We call consistent random expansions of
C := {sets with no structure} exchangeable.

• Standard construction of the random graph is an exchangeable
graph;

• Aldous 1981 and Hoover 1979 give a representation theorem for
exchageable graphs and hypergraphs generalising De Finetti
1929;

• Heavily studied in probability and combinatorics1;

• Exchangeable C′-expansions yield consistent random
C′-expansions of C for any C.

1See Aldous 2010, Kallenberg 1997, Janson and Diaconis 2008, and Austin
2008 for reviews.
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Examples of random expansions

Consistent Random Orderings

Example 4 (Consistent Random Orderings)
Consider C′ = linear orders;

• There is a unique exchangeable ordering: for a1, . . . , ak,

Pa1,...,ak(a1 < · · · < ak) =
1

k!
;

• Angel, Kechris, and Lyons 2014: this is the unique consistent
random ordering for C one of

• k-hypergraphs;
• Kr

n-free hypergraphs;
• metric spaces with rational distances.
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Examples of random expansions

Random Expansions of hypergraphs

Example 5
For C = {k-hypergraphs}:
• Crane and Towsner 2018, and Ackerman 2021 obtain a

representation theorem similar to the Aldous-Hoover theorem;

• If C′ has all relation of arity < k, all CRE(C, C′) are
exchangeable;

• They obtain more general results under disjoint
n-amalgamation for all n (roughly: no ’interesting’ omitted
substructures).

Paolo Marimon, Samuel Braunfeld, Colin Jahel Exchangeability of CREs



Examples of random expansions

Problems on CRE(C, C ′)

Two natural problems2 are:

Problem 1 (What do CRE(C, C ′) look like?)

Given C and C′, can what do the consistent random C′-expansions of
C look like?

Problem 2 (When do we get exchangeability?)

What conditions prima facie weaker than exchangeability imply
exchangeability?

2Appearing in some form in Aldous 1985; Kallenberg 2008; Crane and Towsner
2018; Crane 2018.
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Examples of random expansions

A summary of previous strategies
Previous work follows one of two strategies:
(A) Choose C so that for lots of C′, we can understand CRE(C, C′):

• C := {sets} (De Finetti 1929; Aldous 1981; Hoover 1979);
• C := {linear orders} (Kallenberg 1997);
• C := {k-hypergraphs} (Crane and Towsner 2018; Ackerman

2021).

Only works for C with a unique structure in each size or no interesting
omitted substructures!
(B) Choose C′ so that for lots of C we can understand CRE(C, C′):

• C′ is unary (De Finetti 1929; Jahel and Tsankov 2022);
• C′ := {linear orders} (Angel, Kechris, and Lyons 2014; Balister,

Bollobás, and Janson 2015; Jahel and Tsankov 2022).

Only works for C′ with very slow growth!
Our interest: consistent random graph expansions of 3-hypergraphs
with some omitted configurations (e.g. K3

4 ).
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Results

Main theorem
Adapting techniques from Angel, Kechris, and Lyons 2014:

Main Theorem 6 (Braunfeld, Jahel, and M. 2024)

Let C be k-overlap closed and let C′ have labelled growth rate
O(en

k+δ
) for every δ > 0.

Then every consistent random C′-expansion of C is exchangeable.

• k-overlap closed: (k + 1)-hypergraphs, Kk+1
n -free

k + 1-hypergraphs, and many more . . .
• O(en

k+δ
): C′ has finitely many relations of arity ≤ k.
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Results

k-overlap closed classes

Definition 7 (k-overlap closedness)

L of arity > k. C is k-overlap closed if for every r > k and arbitrarily
large n, there exists an r-uniform hypergraph K on n vertices s.t.

1 K has at least C(r)nk+α(r) many hyperedges for some α(r) > 0;
2 No two K-hyperedges intersect in more than k points;
3 For every H1, H2 ∈ C[r], pasting them into the K-hyperedges

yields G ∈ C[n] (possibly after adding extra relations).

K

H1

H2

2 C[r] G 2 C[n]
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Results

Thoughts on k-overlap closedness
Main Theorem uses a random placement construction and
probabilistic methods. Want to see more?

Definition 8 (k-irreducible)

A is k-irreducible if every k-many vertices from A are in some relation.

By probabilistic methods we prove k-overlap closedness for
C = Forb(F) with all relations of arity > k, where A ∈ F are:

1 (k + 1)-irreducible; OR
2 of bounded size and k-irreducible (for k ≥ 2).

For k = 1 in 1 , we recover Angel, Kechris, and Lyons 2014.

Nonexamples:
• linear orders are not 1-overlap closed;
• two-graphs are not 2-overlap closed.
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Consequences for Keisler measures

Consequences for invariant Keisler measures I

Definition 9 (Invariant Keisler measure)

Let M be countably infinite. An invariant Keisler measure (IKM) is
an Aut(M)-invariant Borel probability measure µ on Defx(M).

• Heavily studied in model theory with several applications to
Szemerédi Regularity;

• Albert 1994 and Ensley 1996 described the IKMs for
homogeneous graphs and (roughly) ω-categorical NIP structures;

• IKMs for homogeneous hypergraphs are HARD! Because:
• There are good techniques (Hruhsovski 2012; Jahel and Tsankov

2022) for
µ(ϕ(x, a) ∧ ψ(x, b)),

• There are very few techniques (cf. Hrushovski 2024) for

µ(ϕ(x, ab) ∧ ψ(x, bc) ∧ ξ(x, ac)).
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Consequences for Keisler measures

Consequences for invariant Keisler measures II
• For M homogeneous, invariant Keisler measures can be viewed

as a special case of invariant random expansions;

• We describe the spaces of invariant Keisler measures for many
homogeneous structures of higher arity (e.g. the universal
homogeneous K3

4 -free 3-hypergraph);

• We build many (i.e. 2ℵ0) model-theoretically tame
counterexamples to conjectures on invariant Keisler measures
which were recently disproven with more ad-hoc non-tame
examples (Chernikov, Hrushovski, Kruckman, Krupiński,
Moconja, Pillay, and Ramsey 2023; Marimon 2023; Evans 2022).
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Consequences for Keisler measures

Problems for the future

Problem 3
Let C have free amalgamation and arity > k. Can we prove
exchangeability of consistent random C′-expansions, where C′ has
labelled growth rate O(en

k+δ
) for all δ > 0?

Problem 4
Can we understand more systematically failures of exchangeability of
CRE(C, C′) when C and C′ have similar growth rates?

Problem 5
Can we provide an Aldous-Hoover-like representation theorem for
expansions of any arity of some of the classes we study? e.g.
consistent random expansions of C = {triangle-free graphs}? (cf.
Crane and Towsner 2018)
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The key lemma for exchangeability

Lemma 10 (Braunfeld, Jahel, and M. 2024)

Suppose that for all H1, H2 ∈ C[k], and ϵ > 0, there is some n,
G ∈ C[n] and non-empty families Θi of embeddings of Hi in G such
that for all H′ ∈ C′[k] and G′ ∈ C′[n] we have∣∣∣∣NΘ1(H

⋆
1,G

∗)

|Θ1|
− NΘ2(H

⋆
2,G

∗)

|Θ2|

∣∣∣∣ < ε,

where G⋆ := G ⋆G′,H⋆
i := Hi ⋆H

′ and NΘi(H
⋆
i ,G

⋆) is the number
of embeddings in Θi that are also embeddings of H⋆

i in G⋆.
Then every consistent random C′-expansion µ of C is exchangeable.

Back to main presentation
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