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A well-known property

▶ Let B be a set and let f ∈ BBn
for some 1 ≤ n. Set

trl1(f ) = {g ∈ BB1
: g(x) = f (c1, . . . , ci−1, x, ci+1, . . . , cn−1)

for all 1 ≤ i ≤ n and constants c1, . . . , cn−1 ∈ B}.

▶ The set trl1(f ) is often called the set of basic translations of f .

▶ It is well-known that if ϱ ⊆ B2 is taken to be an equivalence
relation, then

f ▷ ϱ ⇐⇒ trl1(f ) ▷ ϱ,

▶ Actually, symmetry plays no role in the above property, so it
holds for all ϱ that are quasiorders, i.e. transitive and reflexive
sets of pairs. If the above property holds for a relation ϱ (not
necessarily binary), we write Ξ1(ϱ).
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Context of our results

▶ Pöschel, Jakub́ıková-Studenovská, and Radeleczki found a
characterization of relations (not necessarily binary) ϱ for
which Ξ1(ϱ) holds. An important concept in their work is a
generalization of transitivity to higher arity relations.

▶ Certain relations called higher dimensional equivalences, which
play a role in commutator theory, satisfy higher arity versions
of Ξ. For a d-dimensional equivalence relation,

f ▷ ϱ ⇐⇒ trld(f ) ▷ ϱ,

where the d-translations of a function f are those d-ary
polynomials that can be derived from f by substitution of
constants at some variables (and possibly adding dummy
variables).

▶ Hence, we wish to understand relations ϱ for which Ξd(ϱ)
holds and develop a common framework in which to interpret
all results.
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Reflexivity and transitivity

▶ Let ϱ ⊆ B2 be a reflexive and transitive relation.

▶ By definition, ϱ is a set of unary functions with domain
2 = {0, 1} and range B.

▶ Reflexivity of ϱ means that this set of functions is closed
under substitution by a constant and adding a dummy
variable, e.g. for f (i1) ∈ ϱ, we have

h(i1) := f (0) ∈ ϱ

▶ Transitivity of ϱ means that for any two variable function
f (i1, i2) ∈ B22 with f (0, i1), f (1, i1), f (i1, 0), f (i1, 1) ∈ ϱ, we
also have f (i1, i1) ∈ ϱ. We can draw a picture as follows:

b d

ca

and (a, c), (c , d), (a, b), (b, d) ∈ ϱ =⇒ (a, d) ∈ ϱ
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Our slogans going forward:

▶ Reflexivity = ‘closed under partial evaluation with constants
and adding dummy variables’

▶ Transitivity = ‘closed under variable identification’
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▶ The proof that Ξ1(ϱ) holds for a quasiorder ϱ is easy.

▶ f ▷ ϱ =⇒ trl1(f ) ▷ ϱ is trivial, because ϱ contains all
constant pairs (c, c) for c ∈ X .

▶ The other direction is also trivial, but we present a slightly
more complicated argument which anticipates the general
situation.
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Suppose ρ ⊆ B21 is a quasiorder. We depict pairs in ρ as ‘lines’:
a

b

∈ ρ

Let ρ2 to be the set of all
a b

c d
∈ B22 such that

a

c

∈ ρ
b

d

a

b

c

d

In general, let ρn ⊆ B2n be the set of all labeled hypercubes in which every edge
determines a ρ-pair.

We therefore have a sequence of sets of functions
ρ ⊆ B21 , ρ2 ⊆ B22 . . . . , ρn ⊆ B2n , . . .

The transitivity of ρ implies that this collection of functions is closed under vari-
able identification.

a b

c d
ρ

ρ0
1

0 1

f(x, y) ∈ ρ2 f(x, x) ∈ ρ 0
1

a

d

Aside: It’s easy to see that this sequence of sets of functions is also closed
under permutations of variables and the addition of dummy variables.



Suppose that trl1(f) ▷ ρ. We want to see that f ▷ ρ.

Take f ∈ BB3

(for example) and pairs (a1, b1), (a2, b2), (a3, b3) ∈ ρ. We want to
show that (f(a1, a2, a3), f(b1, b2, b3)) ∈ ρ.

a1

a1

a1

a1

b1

b1

b1

b1

b2

b2

b2

b2

a2

a2

a2

a2

a3

a3 a3

a3

b3

b3 b3

b3

Each of the following belongs to ρ3:

Moreover, each line with the same position is labeled by an equality pair for two
of the three cubes, hence the following belongs to ρ3:

a1

a1

a1

a1

b1

b1

b1

b1

b2

b2

b2

b2

a2

a2

a2

a2

a3

a3 a3

a3

b3

b3 b3

b3

f ( ) = f(a1, a2, a3)

f(a1, b2, a3) f(b1, b2, a3)

f(b1, a2, a3)

f(a1, a2, b3)

f(a1, b2, b3) f(b1, b2, b3)

f(b1, a2, b3)

Call the above labeled cube g(i1, i2, i3). Identifying variables, we obtain g(i1, i1, i1) ∈ ρ.



Special minion
M with domain
2 and range X
determined by
quasiorder ρ:

ρ ⊆ B21 ρ2 ⊆ B22 ρ3 ⊆ B23 ρn ⊆ B2n

Pol(M) Pol1(ρ) ⊆ BB1

Pol2(ρ) ⊆ BB2

Poln(ρ) ⊆ BBn

Each part of the minion is defined by the prop-
erty that any unary function obtained by eval-
uating some variables with constants belongs to
ρ.

This property is inherited by the polymoprhism
clone, that is, f ∈ Pol(M) if and only if
trl1(f) ∈ Pol1(M).

The following is a particular way of viewing this result:

This behavior is a special case of the more general situation.



Definitions

Definition

Let f : BAn
be a function. For 1 ≤ d , we say a function g ∈ BAd

is
a d-translation of f if

g(x1, . . . , xd) = f ( c11 , . . . , c
1
k1︸ ︷︷ ︸

constants

, xu, c
2
1 , . . . , c

2
k2︸ ︷︷ ︸

constants

, xu+1, . . . , c
l+1
1 , . . . , c l+1

kl+1︸ ︷︷ ︸
constants

,

xu+l, c
l+2
1 , . . . , c l+2

kl+2︸ ︷︷ ︸
constants

)

for some 1 ≤ u ≤ u + l ≤ d and constants evaluated at other
inputs. Set

trld(f ) = {g : g is a d-translation of f }

and for ϱ ⊆ BAn

trld(ϱ) =
⋃

{trld(f ) : f ∈ ϱ}.
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Definitions

Definition
Let ϱ ⊆ BAd

. We say that ϱ is internally reflexive if trld(ϱ) ⊆ ϱ.
(Notice that ϱ ⊆ trld(ϱ), because every function in ϱ is trivially a
d-translation of itself.)

▶ Set ϱn = {f ⊆ BAn
: trld(f ) ⊆ ϱ} for 1 ≤ n.

▶ This defines a sequence of sets of functions which we call ϱ∗:

ϱ1 ⊆ BA1
, ϱ2 ⊆ BA2

, . . . , ϱ = ϱd ⊆ BAd︸ ︷︷ ︸
original relation

, . . . , ϱn ⊆ BAn
, . . .

▶ If the above sequence is closed under identification of
variables, we say that ϱ is transitive. (Actually, one can define
transitivity locally: ϱ is transitive if identification of two
variables of every function g ∈ ϱd+1 belongs to ϱ)

▶ If ϱ is both internally reflexive and transitive, then we call ϱ
an elementary type d-dimensional generalized quasiorder.
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Some pictures to provide intuition for the definitions:

g(0, 0) g(0, 1) g(0, 2)

g(1, 0) g(1, 1) g(1, 2)

g(2, 0) g(2, 1) g(2, 2)

g(0, 1)

g(1, 1)

g(2, 1)

g(0, 1)

g(1, 1)

g(2, 1)

g(0, 1)

g(1, 1)

g(2, 1) g(0, 1) g(1, 1) g(2, 1)

g(0, 1) g(1, 1) g(2, 1)

g(0, 1) g(1, 1) g(2, 1)

g(i1, i2) ∈ ρ ⊆ BA2

f(i1, i2) = g(i1, 1) h(i1, i2) = g(i2, 1)

These also belong to ρ if ρ is internally reflexive.

Transitivity means that if a ternary
function has all ’slices’ belonging to
ρ, then the diagonal also belongs to
ρ.



Remark

Internally reflexive is weaker than the usual notion of reflexivity.
Reflexivity is defined with respect to an underlying set, while
internal reflexivity only references the functions in a relation. For
example, the relation {(0, 0)} ⊆ {0, 1}2 is an internally reflexive
binary relation, but is not reflexive. In what follows we assume
all relations ϱ ⊆ ABd

cover their range:

∀a ∈ B(∃f ∈ ϱ(∃c1, . . . , cd ∈ B(f (c1, . . . , cd) = a)))

Therefore in what follows every internally reflexive relation contains
every constant tuple.

Proposition

Let ϱ ⊆ BAd
be an elementary type d-dimensional GQuord . Then

ϱ satisfies the property Ξd : for every 1 ≥ n and f ∈ BBn
,

f ▷ ϱ ⇐⇒ trld(f ) ▷ ϱ.
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Proof sketch (d = 3, n = 4).

If f ▷ ϱ, then the reflexivity of ϱ implies that trl3(f ) ▷ ϱ. On the
other hand, suppose trl3(f ) ▷ ϱ. Given
a(i1, i2, i3), b(i1, i2, i3), c(i1, i2, i3), d(i1, i2, i3) ∈ ϱ, we want to show

f (a(i1, i2, i3), b(i1, i2, i3), c(i1, i2, i3), d(i1, i2, i3)) ∈ ϱ.

Notice that
f
(
a(i11 , i

1
2 , i

1
3 ), b(i

2
1 , i

2
2 , i

2
3 ), c(i

3
1 , i

3
2 , i

3
3 ), d(i

4
1 , i

4
2 , i

4
3 )
)
∈ ϱ9 ⊆ BA9

,

because any way of substituting at least 9 constants above
produces an element of trl3(f ). For example, for constants
r1, . . . , r9:

f
(
a(i11, r1, i

1
3), b(i

2
1, r2, r3), c(r4, r5, r6), d(r7, r8, r9)

)
∈ ϱ ⊆ BA3

Now we can apply the transitivity assumption and identify
variables:
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Collection of
functions ρ∗

with domain A
and range B
determined by
quasiorder ρ:

ρ1 ⊆ BA1

ρd = ρ ⊆ BAd

ρn ⊆ BAn

Pol(ρ) = Pold(ρ)
∗ Pol1(ρ) ⊆ BB1

Pold(ρ) ⊆ BBd

Poln(ρ) ⊆ BBn

ρn is the set of all a ∈ BAn

such that trld(a) ⊆ ρ
for all a ∈ ρn.

This property is inherited by the polymoprhism
clone, that is, f ∈ Pol(ρ) if and only if trld(f) ∈
Pold(ρ).

This generalizes what we showed for quasiorders:



Remark

Note that for any ϱ ⊆ BAd
we can form the sequence

ϱ1, ϱ2, . . . , ϱd−1, ϱ, ϱd+1, . . . , ϱn, . . .

Call this sequence ϱ∗. If A = B, we can ask: when is ϱ∗ a clone?
The answer is exactly when ϱ is a (d)-dimensional elementary type
generalized quasiorder that is equal to the d-ary operations of a
clone.

▶ So, for a polynomial clone C, we can define the generalized
quasiorder dimension of C as the least d such that C = (Cd)∗
(set this dimension to ∞ if such a d does not exist).
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quasiorder dimension of C as the least d such that C = (Cd)∗
(set this dimension to ∞ if such a d does not exist).



From elementary types to compound types

▶ There are many other relations aside from elementary type
generalized quasiorders ϱ that have the property Ξd .

▶ Let ϱ ⊆ BAd1×Ad2 ···×Ads
. Let 1 ≤ i ≤ s. By elementary

properties of exponents, there is a bijection

φi : B
Ad1 ···×Adi−1×Adi×Adi+1 ···×Ads → (BAd1 ···×Adi−1×Adi+1 ···×Ads

)A
di

Definition
Let ϱ ⊆ BAd1×Ad2 ···×Ads

. We say that ϱ is a compound type
(d = d1 + . . . ds)-dimensional generalized quasiorder if φi (ϱ) is an
elementary type (di )-dimensional generalized quasiorder for every
1 ≤ i ≤ s.

▶ The proof that Ξd holds for such ϱ is similar to the proof for
elementary types, but with more bookkeeping.
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Examples

▶ On the two element domain {0, 1} there are four one
dimensional quasiorders of arity 2:

∆ = {(0, 0), (1, 1)}
ϱ1 = ∆ ∪ {(1, 0)}
ϱ2 = ∆ ∪ {(0, 1)}
∇ = ϱ1 ∪ ϱ2

▶ Only ϱ2 and ∇ contain the projection operation. In the case
of ϱ2, we have:

(ϱ2)
∗ = Clo(⟨{0, 1};∧,∨, 0, 1⟩)

∧ =
0 1

00

,∨ =
1 1

10

∈ (ϱ2)
∗

▶ Obviously, we have in the case of ∇:

(∇)∗ = Clo(⟨{0, 1};∧,∨,¬, 0, 1⟩)
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Examples

▶ Neither ∆ or ϱ1 contain the projection operation, hence
neither (ϱ1)

∗ or (∆)∗ is a clone. For example,

0 0

01

∈ (ϱ1)
∗.

▶ On the other hand, we know that both clones Pol(∆) and
Pol(ϱ1) have dimension 1, hence each is equal to one of the
two clones from earlier. In this case:

Pol(ϱ1) = Clo(⟨{0, 1};∧,∨, 0, 1⟩)
Pol(∆) = Clo(⟨{0, 1};∧,∨,¬, 0, 1⟩).
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Examples

▶ Let

ϱL =


y w

zx

∈ 22
2
: x + y + z + w ≡ 0 mod 2

 .

▶ It is easy to show that ϱL is a two-dimensional elementary
type generalized quasiorder. It also contains all projection
operations, hence (ϱL)

∗ is a clone. In this case, it is the
maximal clone of linear functions L on a two element set.

▶ L1 contains every unary function, hence L ≠ (L1)
∗

▶ Therefore, L is a (2)-dimensional clone.

▶ The other 3 polynomial clones on {0, 1} are also
(2)-dimensional.
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Examples

▶ There exist clones that do not have finite generalized
quasiorder dimension.

▶ Let ϱ = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)} and let C = Pol(ϱ).

▶ There does not exist d such that C = (Cd)∗.
▶ Let

f (x1, . . . , xd+1) =


0 if x1 + · · ·+ xd+1 ≤ d + 1

2 if x1 = · · · = xd+1 = 2

1 otherwise.

▶ Can show that f ∈ (Cd)∗, but f (x , x , . . . , x) is not.
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Examples

▶ For every d , there exists a polynomial clone of generalized
quasiorder dimension (d).

▶ For example, let A2 = ⟨{0, 1, 2, 3}; 2x1x2, 0, 1, 2, 3⟩. It is easy
to see that all of the operations in C = Clo(A2) have at most
two essential variables.

▶ Therefore, C ̸= (C2)∗, because the operation 2x1x2x3 ∈ (C2)∗.
▶ On the other hand, C = (C3)∗, so C has dimension (3).

▶ In general, the algebra Ad = ⟨{0, 1, 2, 3}; 2x1 . . . xd , 0, 1, 2, 3⟩
determines a clone with dimension d + 1.
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Elementary type vs. compound type

▶ There are many examples of compound type generalized
quasiorders which come from higher commutator theory.

▶ For example, let A be a Maltsev algebra and α, β ∈ Con(A).
Set M(α, β) to be

SgA22


x y

yx

: ⟨x , y⟩ ∈ α

 ∪


y y

xx

: ⟨x , y⟩ ∈ β




The commutator can then be defined as

[α, β] =

{
⟨x , y⟩ :

x y

xx

∈ M(α, β)

}

It’s easy to show that M(α, β) is a compound type
(2)-dimensional generalized quasiorder. Furthermore, if
α ̸= β, then M(α, β) is not elementary type.
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▶ There also exist elementary type generalized quasiorders that
are not compound type. Let B = {a, b, c}.

ϱ =


y u

zx

∈ B22 : x = u or y = z implies x = y = u = z


▶ ϱ is not a compound type GQuord, as witnessed by the

following two elements:

b c

ca

,

c a

bc

▶ ϱ is elementary type, because any way of filling in the
following cube so that all faces belong to ϱ forces a = b.

· b

·a

· a

·x

∈ B23
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Some Questions

▶ Classify all generalized quasiorders on a (2)-element domain
(already completed for some low-dimension cases). We hope
this will give some insight into beginning work on the
(3)-element domain.

▶ The condition that a variety V is congruence
meet-semidistributive is equivalent to the condition that the
commutator is neutral for all congruences across the variety.
This is equivalent to the collapse of certain intervals in higher
dimensional congruence lattices. Which analogous intervals
collapse in generalized quasiorder lattices for congruence
meet-semidistributive varieties?

▶ We hope to eventually apply this theory to say something
about the lattice of clones on a finite set. For any clone C,
there is an infinite descending chain of clones

Pol( GQuord (1)︸ ︷︷ ︸
(1)-dimensional

(C)) ≥ · · · ≥ Pol( GQuord (n)︸ ︷︷ ︸
(n)-dimensional

(C)) ≥ · · · ≥ C
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Thank you for your attention!


