Valued Constraint Satisfaction Problem and Resilience in Database Theory

Žaneta Semanišinová joint work with Manuel Bodirsky and Carsten Lutz

Institute of Algebra TU Dresden

LICS 11 Jul 2024

ERC Synergy Grant POCOCOP (GA 101071674)

1/7

Database: a relational structure \mathfrak{A} Conjunctive query: a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Database: a relational structure \mathfrak{A} Conjunctive query: a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Definition (Resilience)

Fixed conjunctive query q. **Input**: a finite database $\mathfrak{A}, u \in \mathbb{N}$

Output: Can we remove $\leq u$ tuples from relations of \mathfrak{A} so that $\mathfrak{A} \not\models q$?

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu ('10).

Database: a relational structure \mathfrak{A} Conjunctive query: a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Definition (Resilience)

Fixed conjunctive query q.

Input: a finite database \mathfrak{A} , $u \in \mathbb{N}$

Output: Can we remove $\leq u$ tuples from relations of \mathfrak{A} so that $\mathfrak{A} \not\models q$?

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu ('10). **Example:** The resilience of

$$q = \exists x, y, z(R(x, y) \land R(y, z))$$

with respect to \mathfrak{A} is 1 - remove (C, E).

$$A \xrightarrow{\mathfrak{A}} D = D$$

LICS, 11 Jul 2024

Database: a relational structure \mathfrak{A} Conjunctive query: a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Definition (Resilience)

Fixed conjunctive query q.

Input: a finite database \mathfrak{A} , $u \in \mathbb{N}$

Output: Can we remove $\leq u$ tuples from relations of \mathfrak{A} so that $\mathfrak{A} \not\models q$?

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu ('10). Example: The resilience of

$$q = \exists x, y, z(R(x, y) \land R(y, z))$$

with respect to \mathfrak{A} is 1 - remove (C, E).

Goal: Classify complexity of resilience for all *q*.

LICS, 11 Jul 2024

Example: $q := \exists x, y (R(x, y) \land S(y))$

X Example: $q := \exists x, y(R(x, y) \land S(y))$ R(x, y)canonical structure incidence graph I(q)Theorem (Cherlin, Shelah, Shi '99) Let g be a query and \mathfrak{Q} its canonical structure. If I(g) is connected, then there exists a structure \mathfrak{B}_{a} , such that for every finite \mathfrak{A} : $\mathfrak{A} \not\models q \Leftrightarrow \mathfrak{Q} \not\rightarrow \mathfrak{A} \Leftrightarrow \mathfrak{A} \rightarrow \mathfrak{B}_{q}$ • \mathfrak{B}_{a} can be chosen so that $\operatorname{Aut}(\mathfrak{B}_{a})$ is oligomorphic.

Example: $q := \exists x, y (R(x, y) \land S(y))$

$$\frac{R}{x} \frac{S}{y}$$

 $\begin{array}{c} y \\ R(x,y) \\ S(y) \end{array}$

canonical structure incidence graph I(q)

Х

Theorem (Cherlin, Shelah, Shi '99)

Let q be a query and \mathfrak{Q} its canonical structure. If I(q) is connected, then there exists a structure \mathfrak{B}_q , such that for every finite \mathfrak{A} :

 $\mathfrak{A} \not\models q \, \Leftrightarrow \, \mathfrak{Q}
e \mathfrak{A} \, \Leftrightarrow \, \mathfrak{A} o \mathfrak{B}_q$

- \mathfrak{B}_q can be chosen so that $\operatorname{Aut}(\mathfrak{B}_q)$ is oligomorphic.
- B_q can be chosen finite iff I(q) is a tree. (Nešetřil, Tardiff '00; Larose, Loten, Tardiff '07)

Example: $q := \exists x, y (R(x, y) \land S(y))$

$$\frac{R}{x} \frac{S}{y}$$

 $\begin{array}{c} y \\ R(x,y) \\ S(y) \end{array}$

canonical structure incidence graph I(q)

х

Theorem (Cherlin, Shelah, Shi '99)

Let q be a query and \mathfrak{Q} its canonical structure. If I(q) is connected, then there exists a structure \mathfrak{B}_q , such that for every finite \mathfrak{A} :

 $\mathfrak{A} \not\models q \, \Leftrightarrow \, \mathfrak{Q}
e \mathfrak{A} \, \Leftrightarrow \, \mathfrak{A} o \mathfrak{B}_q$

- \mathfrak{B}_q can be chosen so that $\operatorname{Aut}(\mathfrak{B}_q)$ is oligomorphic.
- B_q can be chosen finite iff I(q) is a tree. (Nešetřil, Tardiff '00; Larose, Loten, Tardiff '07)

oligomorphic – countable domain B_q and the action of $Aut(\mathfrak{B}_q)$ on B_q^n has finitely many orbits for every $n \ge 1$

Example: $q := \exists x, y (R(x, y) \land S(y))$

$$\frac{R}{x} \frac{S}{y}$$

 $\begin{array}{c} y \\ R(x,y) \\ S(y) \end{array}$

canonical structure incidence graph I(q)

х

Theorem (Cherlin, Shelah, Shi '99)

Let q be a query and \mathfrak{Q} its canonical structure. If I(q) is connected, then there exists a structure \mathfrak{B}_q , such that for every finite \mathfrak{A} :

 $\mathfrak{A} \not\models q \, \Leftrightarrow \, \mathfrak{Q}
e \mathfrak{A} \, \Leftrightarrow \, \mathfrak{A} o \mathfrak{B}_q$

- \mathfrak{B}_q can be chosen so that $\operatorname{Aut}(\mathfrak{B}_q)$ is oligomorphic.
- B_q can be chosen finite iff I(q) is a tree. (Nešetřil, Tardiff '00; Larose, Loten, Tardiff '07)

Example: For every finite directed graph *G* we have:

$$\not\rightarrow G \Leftrightarrow G \rightarrow \uparrow$$

3/7

Valued Constraint Satisfaction Problem

CSP – satisfiability of a conjunction of atomic formulas \hookrightarrow generalize by giving values to constraints

Valued Constraint Satisfaction Problem

- A valued structure Γ consists of:
 - (countable) domain D
 - (finite, relational) signature au
 - for each $R \in \tau$ of arity k, a function $R^{\Gamma}: D^k \to \mathbb{Q} \cup \{\infty\}$

Valued Constraint Satisfaction Problem

- A valued structure Γ consists of:
 - (countable) domain D
 - (finite, relational) signature au
 - for each $R \in \tau$ of arity k, a function $R^{\Gamma}: D^k \to \mathbb{Q} \cup \{\infty\}$

Definition (VCSP(Γ))

Input: $u \in \mathbb{Q}$, an expression

$$\psi(x_1,\ldots,x_n)=\sum_i\psi_i,$$

where each ψ_i is an atomic τ -formula **Output:** Is

$$\inf_{\bar{a}\in D^n}\phi(\bar{a})\leq u$$
 in Γ ?

Connection of resilience and VCSPs

query q with I(q) connected (WLOG) \sim obtain the dual structure $\mathfrak{B}_q \sim$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Connection of resilience and VCSPs

query q with I(q) connected (WLOG) \rightarrow obtain the dual structure $\mathfrak{B}_q \rightarrow$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, Lutz, S.)

The resilience problem for q equals $VCSP(\Gamma_q)$.

query q with I(q) connected (WLOG) \rightarrow obtain the dual structure $\mathfrak{B}_q \rightarrow$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, Lutz, S.)

The resilience problem for q equals $VCSP(\Gamma_q)$.

Remark: We need to consider bag databases: tuples have multiplicity ≥ 1 .

query q with I(q) connected (WLOG) \rightarrow obtain the dual structure $\mathfrak{B}_q \rightarrow$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, Lutz, S.)

The resilience problem for q equals $VCSP(\Gamma_q)$.

Remark: We need to consider bag databases: tuples have multiplicity ≥ 1 . **Fact**: If the domain of Γ is finite, VCSP(Γ) is in P or NP-complete. [Kozik, Ochremiak ('15); Kolmogorov, Rolínek, Krokhin ('15); Bulatov ('17); Zhuk ('17)] query q with I(q) connected (WLOG) \rightarrow obtain the dual structure $\mathfrak{B}_q \rightarrow$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, Lutz, S.)

The resilience problem for q equals $VCSP(\Gamma_q)$.

Remark: We need to consider bag databases: tuples have multiplicity ≥ 1 . **Fact**: If the domain of Γ is finite, VCSP(Γ) is in P or NP-complete. [Kozik, Ochremiak ('15); Kolmogorov, Rolínek, Krokhin ('15); Bulatov ('17); Zhuk ('17)]

Corollary (Bodirsky, Lutz, S.)

Let q be a conjunctive query such that I(q) is acyclic. Then the resilience problem for q is in P or NP-complete.

5/7

Main focus: develop the theory of infinite-domain VCSPs

Main focus: develop the theory of infinite-domain VCSPs

 algebraic condition based on fractional polymorphisms sufficient for tractability of VCSP(Γ)

Main focus: develop the theory of infinite-domain VCSPs

- algebraic condition based on fractional polymorphisms sufficient for tractability of VCSP(Γ)
- algebraic condition based on pp-constructability sufficient for NP-hardness of VCSP(Γ)

Main focus: develop the theory of infinite-domain VCSPs

- algebraic condition based on fractional polymorphisms sufficient for tractability of VCSP(Γ)
- algebraic condition based on pp-constructability sufficient for NP-hardness of VCSP(Γ)
- \hookrightarrow answers open question [Freire, Gatterbauer, Immerman, Meliou '20] about the resilience of

$$q := \exists x, y \big(S(x) \land R(x, y) \land R(y, x) \land R(y, y) \big)$$

Main focus: develop the theory of infinite-domain VCSPs

- algebraic condition based on fractional polymorphisms sufficient for tractability of VCSP(Γ)
- algebraic condition based on pp-constructability sufficient for NP-hardness of VCSP(Γ)
- \hookrightarrow answers open question [Freire, Gatterbauer, Immerman, Meliou '20] about the resilience of

$$q := \exists x, y (S(x) \land R(x, y) \land R(y, x) \land R(y, y))$$

Conjecture: For a query q, whenever Γ_q does not satisfy the hardness condition, it satisfies the tractability condition.

Main focus: develop the theory of infinite-domain VCSPs

- algebraic condition based on fractional polymorphisms sufficient for tractability of VCSP(Γ)
- algebraic condition based on pp-constructability sufficient for NP-hardness of VCSP(Γ)
- \hookrightarrow answers open question [Freire, Gatterbauer, Immerman, Meliou '20] about the resilience of

$$q := \exists x, y (S(x) \land R(x, y) \land R(y, x) \land R(y, y))$$

Conjecture: For a query q, whenever Γ_q does not satisfy the hardness condition, it satisfies the tractability condition.

 the conjecture is true for every Γ_q on a finite domain (derived from [Kozik, Ochremiak '15] and [Kolmogorov, Krokhin, Rolínek '15])

Main focus: develop the theory of infinite-domain VCSPs

- algebraic condition based on fractional polymorphisms sufficient for tractability of VCSP(Γ)
- algebraic condition based on pp-constructability sufficient for NP-hardness of VCSP(Γ)
- \hookrightarrow answers open question [Freire, Gatterbauer, Immerman, Meliou '20] about the resilience of

$$q := \exists x, y (S(x) \land R(x, y) \land R(y, x) \land R(y, y))$$

Conjecture: For a query q, whenever Γ_q does not satisfy the hardness condition, it satisfies the tractability condition.

- the conjecture is true for every Γ_q on a finite domain (derived from [Kozik, Ochremiak '15] and [Kolmogorov, Krokhin, Rolínek '15])
- equivalently, for every query q such that I(q) is a tree

Thank you for your attention

Funding statement: Funded by the European Union (ERC, POCOCOP, 101071674).

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.