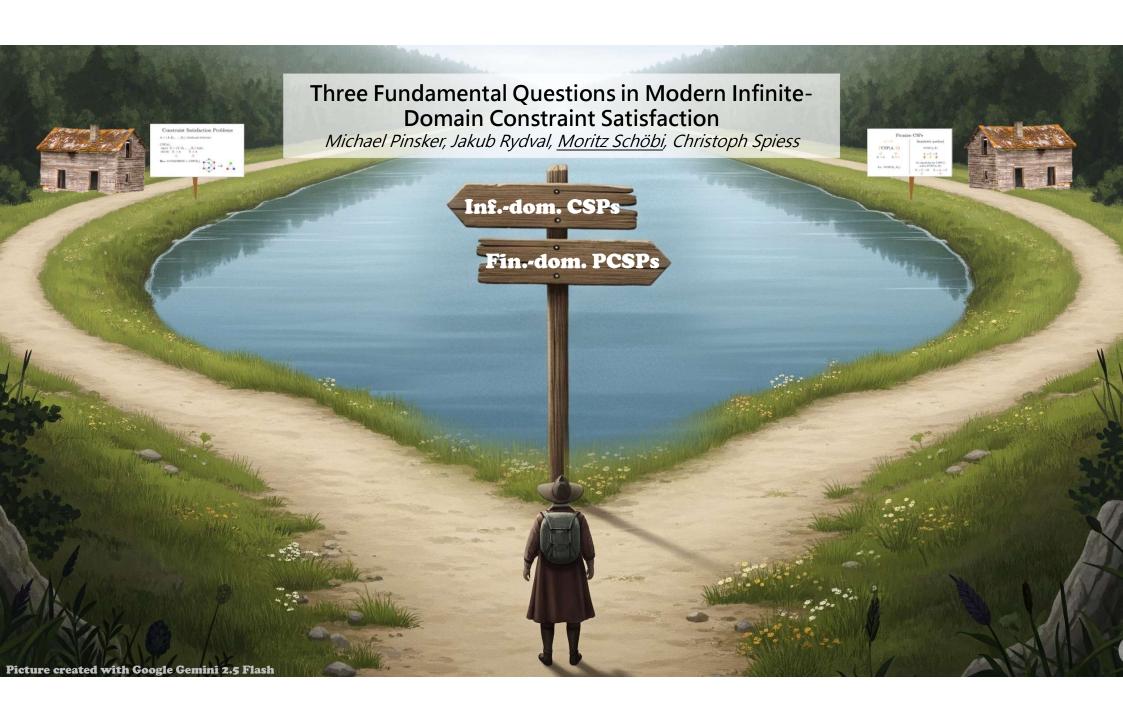
Three Fundamental Questions in Modern Infinite-Domain Constraint Satisfaction

Michael Pinsker, Jakub Rydval, Moritz Schöbi, Christoph Spiess

MFCS 2025, Warsaw

ERC Synergy Grant POCOCOP (GA 101071674).



 $\mathbb{A} = (A; R_1, \dots, R_n)$ relational structure

CSP(A)

input: $\mathbb{X} = (X; R_1, \dots, R_n)$ finite

decide: $\mathbb{X} \to \mathbb{A}$ $\mathbb{X} \not\to \mathbb{A}$

 $\mathbb{A} = (A; R_1, \dots, R_n)$ relational structure

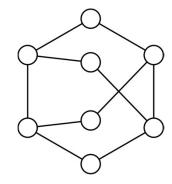
CSP(A)

input: $\mathbb{X} = (X; R_1, \dots, R_n)$ finite

decide: $\mathbb{X} \to \mathbb{A}$ $\mathbb{X} \not\to \mathbb{A}$

✓

Ex.: 3-COLORING



 $\mathbb{A} = (A; R_1, \dots, R_n)$ relational structure

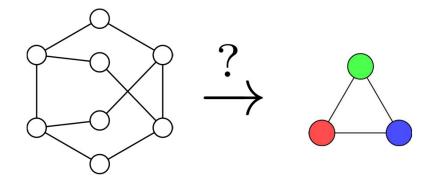
CSP(A)

input: $\mathbb{X} = (X; R_1, \dots, R_n)$ finite

decide: $\mathbb{X} \to \mathbb{A}$ $\mathbb{X} \not\to \mathbb{A}$

 $\langle \rangle$

Ex.: 3-COLORING = $CSP(\mathbb{K}_3)$



 $\mathbb{A} = (A; R_1, \dots, R_n)$ relational structure

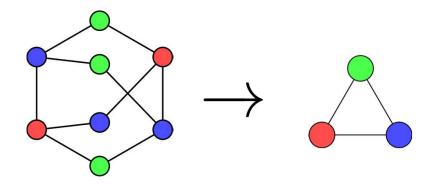
 $CSP(\mathbb{A})$

input: $\mathbb{X} = (X; R_1, \dots, R_n)$ finite

decide: $\mathbb{X} \to \mathbb{A}$ $\mathbb{X} \not\to \mathbb{A}$

 $\langle \rangle$

Ex.: 3-COLORING = $CSP(\mathbb{K}_3)$



 $\mathbb{A} = (A; R_1, \dots, R_n)$ relational structure

 $\mathbb{A}^n \dots n$ -th power of \mathbb{A}

 $\operatorname{Pol}(\mathbb{A}) := \bigcup_{n \in \mathbb{N}} \operatorname{Hom}(\mathbb{A}^n, \mathbb{A})$

$$\operatorname{Pol}(\mathbb{A}) \models s(x_1, \dots, x_n) \approx t(y_1, \dots, y_m) :\Leftrightarrow \exists s^{\mathbb{A}}, t^{\mathbb{A}} \in \operatorname{Pol}(\mathbb{A})$$
$$\forall a_1, \dots, a_n, b_1, \dots, b_m \in A : s^{\mathbb{A}}(a_1, \dots, a_n) = t^{\mathbb{A}}(b_1, \dots, b_m)$$

 $\mathbb{A} = (A; R_1, \dots, R_n)$ relational structure

 $\mathbb{A}^n \dots n$ -th power of \mathbb{A}

 $pp\ formulas...\exists x_1...\exists x_n \bigwedge_i \phi_i(x_1,...,x_n)$

 $\mathbb{A} \ pp\text{-}constructs \ \mathbb{B} \Leftrightarrow \exists \mathbb{B}' \colon \mathbb{A} \ pp\text{-}defines \ \mathbb{B}' \ on \ A^n \wedge \mathbb{B}' \sim_H \mathbb{B}.$

Fact: If \mathbb{A} pp-constructs \mathbb{B} , and $CSP(\mathbb{A})$ is in P, so is $CSP(\mathbb{B})$.

Finite Dichotomy Theorem

Theorem (Bulatov '17 and Zhuk '17) A finite relational structure. Then

- A pp-constructs \mathbb{K}_3 and $CSP(\mathbb{A})$ is NP-complete, or
- $\operatorname{Pol}(\mathbb{A}) \models s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$ and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Finite Dichotomy Theorem

Theorem (Bulatov '17 and Zhuk '17) A finite relational structure. Then

- A pp-constructs \mathbb{K}_3 and $CSP(\mathbb{A})$ is NP-complete, or
- $\operatorname{Pol}(\mathbb{A}) \models s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$ and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Extend result to countable structures?

Finite Dichotomy Theorem

Theorem (Bulatov '17 and Zhuk '17) A finite relational structure. Then

- A pp-constructs \mathbb{K}_3 and $CSP(\mathbb{A})$ is NP-complete, or
- $\operatorname{Pol}(\mathbb{A}) \models s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$ and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Extend result to countable structures?

 \mathbb{A} is *homogeneous* if isomorphisms between finite substructures extend to global automorphisms.

A is *finitely bounded* if class of finite substructures is given by uniform universal f.o. axiomatisation.

Ex.: $(\mathbb{Q}; <)$ is fbh:

- Order-preserving functions extend to automorphisms.
- Axioms irreflexivity, transitivity and totality.

Conjecture (Bodirsky and Pinsker '12) \mathbb{A} reduct of countable fbh \mathbb{B} . Exactly one holds.

- \mathbb{A} pp-constructs \mathbb{K}_3 (\Rightarrow CSP(\mathbb{A}) is NP-complete);
- A does not pp-construct \mathbb{K}_3 , $\operatorname{Pol}(\mathbb{A}) \models \alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$, and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Note: $s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$ changed to $\alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$.

Conjecture (Bodirsky and Pinsker '12) \mathbb{A} reduct of countable fbh \mathbb{B} . Exactly one holds.

- \mathbb{A} pp-constructs \mathbb{K}_3 (\Rightarrow CSP(\mathbb{A}) is NP-complete);
- A does not pp-construct \mathbb{K}_3 , $\operatorname{Pol}(\mathbb{A}) \models \alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$, and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Impose additional meaningful structural and algebraic assumptions on \mathbb{A} and $\text{Pol}(\mathbb{A})$ w.l.o.g.?

Conjecture (Bodirsky and Pinsker '12) \mathbb{A} reduct of countable fbh \mathbb{B} . Exactly one holds.

- \mathbb{A} pp-constructs \mathbb{K}_3 (\Rightarrow CSP(\mathbb{A}) is NP-complete);
- A does not pp-construct \mathbb{K}_3 , $\operatorname{Pol}(\mathbb{A}) \models \alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$, and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Impose additional meaningful structural and algebraic assumptions on \mathbb{A} and $\text{Pol}(\mathbb{A})$ w.l.o.g.?

 \mathbb{A} has no algebraicity if for all $n, \overline{a} \in A^n$, $\operatorname{Aut}(\mathbb{A}/\overline{a})$ does not stabilize any $a' \notin \overline{a}$.

Conjecture (Bodirsky and Pinsker '12) \mathbb{A} reduct of countable fbh \mathbb{B} . Exactly one holds.

- \mathbb{A} pp-constructs \mathbb{K}_3 (\Rightarrow CSP(\mathbb{A}) is NP-complete);
- A does not pp-construct \mathbb{K}_3 , $\operatorname{Pol}(\mathbb{A}) \models \alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$, and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Impose additional meaningful structural and algebraic assumptions on \mathbb{A} and $Pol(\mathbb{A})$ w.l.o.g.?

 \mathbb{A} has no algebraicity if for all $n, \overline{a} \in A^n$, $\operatorname{Aut}(\mathbb{A}/\overline{a})$ does not stabilize any $a' \notin \overline{a}$.

Ex.: $(\mathbb{Q}; <)$ has no algebraicity.

Conjecture (Bodirsky and Pinsker '12) \mathbb{A} reduct of countable fbh \mathbb{B} . Exactly one holds.

- \mathbb{A} pp-constructs \mathbb{K}_3 (\Rightarrow CSP(\mathbb{A}) is NP-complete);
- A does not pp-construct \mathbb{K}_3 , $\operatorname{Pol}(\mathbb{A}) \models \alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$, and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Impose additional meaningful structural and algebraic assumptions on \mathbb{A} and $Pol(\mathbb{A})$ w.l.o.g.?

 \mathbb{A} has no algebraicity if for all $n, \overline{a} \in A^n$, $\operatorname{Aut}(\mathbb{A}/\overline{a})$ does not stabilize any $a' \notin \overline{a}$.

Ex.: $(\mathbb{Q}; <)$ has no algebraicity.

Conjecture (Bodirsky and Pinsker '12) \mathbb{A} reduct of countable fbh \mathbb{B} . Exactly one holds.

- \mathbb{A} pp-constructs \mathbb{K}_3 (\Rightarrow CSP(\mathbb{A}) is NP-complete);
- A does not pp-construct \mathbb{K}_3 , $\operatorname{Pol}(\mathbb{A}) \models \alpha \circ s(x, y, z, x, y, z) \approx \beta \circ s(y, z, x, z, x, y)$, and $\operatorname{CSP}(\mathbb{A})$ is tractable.

Impose additional meaningful structural and algebraic assumptions on \mathbb{A} and $\text{Pol}(\mathbb{A})$ w.l.o.g.?

A has no algebraicity if for all $n, \overline{a} \in A^n$, $\operatorname{Aut}(\mathbb{A}/\overline{a})$ does not stabilize any $a' \notin \overline{a}$.

Ex.: $(\mathbb{Q}; <)$ has no algebraicity.

Removing Algebraicity

Theorem \mathbb{A} reduct of fbh \mathbb{B} . There is \mathbb{A}' , reduct of fbh \mathbb{B}' such that:

- \mathbb{A}', \mathbb{B}' have no algebraicity.
- CSP(A') and CSP(A) are Datalog-interreducible.
- \mathbb{A}' pp-constructs \mathbb{K}_3 iff \mathbb{A} does.
- $Pol(\mathbb{A}')$ preserves \neq .

 \mathbb{A} red. of \mathbb{B} $\bigwedge_{\text{atalog}}^{\text{Datalog}}$

 \mathbb{A}' red. of \mathbb{B}'



CSP(A)

 $\mathbb{X} \to \mathbb{A}$ $\mathbb{X} \to \mathbb{A}$

 $\mathbb{A} \to \mathbb{B}$

CSP(A)

$$\mathbb{X} \to \mathbb{A}$$
 $\mathbb{X} \to \mathbb{A}$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(A, \mathbb{B})$

$$\mathbb{X} \to \mathbb{A}$$
 $\mathbb{X} \to \mathbb{A}$

$$\mathbb{X} \nrightarrow \mathbb{A}$$

$$\mathbb{A} \to \mathbb{B}$$

$$\mathbf{PCSP}(\mathbb{A}, \mathbb{B})$$

$$\mathbb{A} \to \mathbb{B}$$

$$PCSP(A, \mathbb{B})$$

$$\mathbb{X} \to \mathbb{A}$$

$$\mathbb{X} o \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$

 \checkmark

(x)

 $\mathbb{X} \to \mathbb{A}$

 $\mathbb{X} o \mathbb{B}$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{X} \to \mathbb{A}$$

$$\mathbb{X} \nrightarrow \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(A, \mathbb{B})$

 \checkmark

(x)

 $\mathbb{X} \to \mathbb{A}$

 $\mathbb{X} \nrightarrow \mathbb{B}$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

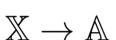
Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

 $\mathbb{A} \to \mathbb{C} \to \mathbb{B}$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$



$$\mathbb{X} o \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{X} \to \mathbb{A}$$

$$\mathbb{X} \nrightarrow \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

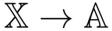
 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

An algorithm for $CSP(\mathbb{C})$ solves $PCSP(\mathbb{A}, \mathbb{B})$:

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$



(x)

$$\mathbb{X} \nrightarrow \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

An algorithm for $CSP(\mathbb{C})$ solves $PCSP(\mathbb{A}, \mathbb{B})$:

$$\mathbb{X} \to \mathbb{C}$$

$$\mathbb{X} o \mathbb{C}$$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{X} \to \mathbb{A}$$

$$\mathbb{X} \nrightarrow \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

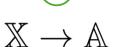
An algorithm for $CSP(\mathbb{C})$ solves $PCSP(A, \mathbb{B})$:

$$\mathbb{X} \to \mathbb{C} \to \mathbb{B} \qquad \mathbb{X} \nrightarrow \mathbb{C}$$

$$\mathbb{X} o \mathbb{C}$$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$



 $\mathbb{X} \nrightarrow \mathbb{B}$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

An algorithm for $CSP(\mathbb{C})$ solves $PCSP(\mathbb{A}, \mathbb{B})$:

$$\mathbb{X} \to \mathbb{C} \to \mathbb{B} \qquad \mathbb{X} \nrightarrow \mathbb{C}$$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{X} \to \mathbb{A}$$

$$\mathbb{X} \nrightarrow \mathbb{B}$$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

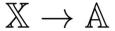
$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

An algorithm for $CSP(\mathbb{C})$ solves $PCSP(\mathbb{A}, \mathbb{B})$:

$$\mathbb{X} \to \mathbb{C} \to \mathbb{B} \qquad \mathbb{X} \nrightarrow \mathbb{A} \to \mathbb{C}$$

 $\mathbb{A} \to \mathbb{B}$

 $PCSP(\mathbb{A}, \mathbb{B})$



 $\mathbb{X} \nrightarrow \mathbb{B}$

Ex.: $PCSP(\mathbb{K}_3, \mathbb{K}_5)$

Sandwich method

 $PCSP(\mathbb{A}, \mathbb{B})$

$$\mathbb{A} \to \mathbb{C} \to \mathbb{B}$$

An algorithm for $CSP(\mathbb{C})$ solves $PCSP(A, \mathbb{B})$:

$$\mathbb{X} \to \mathbb{C} \to \mathbb{B} \qquad \mathbb{X} \nrightarrow \mathbb{A} \to \mathbb{C}$$

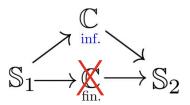
$$\mathbb{X} o \mathbb{A} o \mathbb{C}$$

Infinite cheeses

Infinite cheeses

```
Theorem (Barto '19, Mottet '25) \exists finite (S_1, S_2)
```

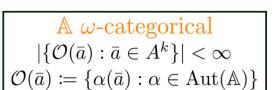
- \exists infinite/ ω -categorical tractable cheese \mathbb{C}
- ullet $\not \exists$ finite tractable cheese

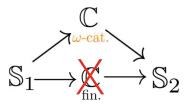


Infinite cheeses

```
Theorem (Barto '19, Mottet '25) \exists finite (S_1, S_2)
```

- $\exists infinite/\omega$ -categorical tractable cheese \mathbb{C}
- $\not\exists$ finite tractable cheese





Infinite cheeses

Theorem (Barto '19, Mottet '25) $\exists finite (S_1, S_2)$

- $\exists infinite/\omega$ -categorical tractable cheese \mathbb{C}
- \exists finite tractable cheese

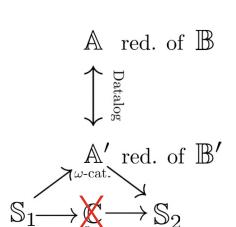
 $|\{\mathcal{O}(\bar{a}): \bar{a} \in A^k\}| < \infty$ $\mathcal{O}(\bar{a}) := \{ \alpha(\bar{a}) : \alpha \in \operatorname{Aut}(\mathbb{A}) \}$

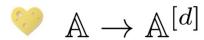
 $\mathbb{A} \omega$ -categorical

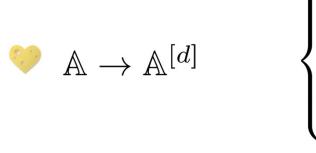
Theorem

 \mathbb{A} reduct of fbh \mathbb{B}

- $\Rightarrow \exists \mathbb{A}' \ reduct \ of fbh \ \mathbb{B}', \ finite \ \mathbb{S}_1, \mathbb{S}_2$
 - CSP(A) and CSP(A') Datalog-interreducible.
 - A' is a cheese for $PCSP(S_1, S_2)$
 - ∄ finite tractable cheese





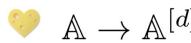


$$\mathbb{A} \to \mathbb{A}^{[d]}$$

$$\bullet \operatorname{Pol}(\mathbb{A}^{[a]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^{a}$$

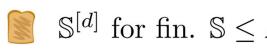
A reduct of linearly ordered fbh \mathbb{B} , Pol(A) preserves \neq

•
$$\operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$



•
$$\operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$
• $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{CSP}(\mathbb{A}^{[d]})$ are "the same" (up to pp-interpretation)

• If \mathbb{A} is $\begin{pmatrix} \omega\text{-categorical} \\ \text{homogeneous} \\ \text{finitely bounded} \\ \text{a reduct of } \mathbb{B} \end{pmatrix}$, then $\mathbb{A}^{[d]}$ is $\begin{pmatrix} \omega\text{-categorical} \\ \text{homogeneous} \\ \text{finitely bounded} \\ \text{a reduct of } \mathbb{B}^{[d]} \end{pmatrix}$



•
$$\operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$

$$\mathbb{S}^{[d]} \text{ for fin. } \mathbb{S} \leq \mathbb{A}$$

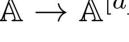
$$\bullet \operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$

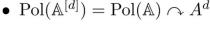
$$\bullet \operatorname{CSP}(\mathbb{A}) \text{ and } \operatorname{CSP}(\mathbb{A}^{[d]}) \text{ are "the same" (up to pp-interpretation)}$$

$$\bullet \operatorname{If} \mathbb{A} \text{ is } \begin{pmatrix} \omega\text{-categorical} \\ \operatorname{homogeneous} \\ \operatorname{finitely bounded} \\ \operatorname{a reduct of } \mathbb{B} \end{pmatrix}, \text{ then } \mathbb{A}^{[d]} \text{ is } \begin{pmatrix} \omega\text{-categorical} \\ \operatorname{homogeneous} \\ \operatorname{finitely bounded} \\ \operatorname{a reduct of } \mathbb{B}^{[d]} \end{pmatrix}$$

$$\mathbb{S}^{[d]}$$
 for fin. $\mathbb{S} \leq \mathbb{A}$

$$\mathbb{A} \to \mathbb{A}^{[d]}$$





• If
$$\mathbb{A}$$
 is $\begin{pmatrix} \text{homogeneous} \\ \text{finitely bounde} \\ \text{a reduct of } \mathbb{B} \end{pmatrix}$

$$\mathbb{S}^{[d]} \text{ for fin. } \mathbb{S} \leq \mathbb{A}$$

$$\bullet \operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$

$$\bullet \operatorname{CSP}(\mathbb{A}) \text{ and } \operatorname{CSP}(\mathbb{A}^{[d]}) \text{ are "the same" (up to pp-interpretation)}$$

$$\bullet \operatorname{If} \mathbb{A} \text{ is } \begin{pmatrix} \omega\text{-categorical} \\ \operatorname{homogeneous} \\ \operatorname{finitely bounded} \\ \operatorname{a reduct of } \mathbb{B} \end{pmatrix}, \text{ then } \mathbb{A}^{[d]} \text{ is } \begin{pmatrix} \omega\text{-categorical} \\ \operatorname{homogeneous} \\ \operatorname{finitely bounded} \\ \operatorname{a reduct of } \mathbb{B}^{[d]} \end{pmatrix}$$

$$\mathbb{S}^{[d]}$$
 for fin. $\mathbb{S} \leq \mathbb{A}$

$$\mathbb{A} \to \mathbb{A}^{[d]}$$

$$\mathbb{A}^{[d]}_{/\mathrm{Aut}(\mathbb{B})}$$

•
$$\operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$

$$\mathbb{S}^{[d]} \text{ for fin. } \mathbb{S} \leq \mathbb{A}$$

$$\mathbb{P}_{Ol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^{d}$$

$$\mathbb{C}_{SP}(\mathbb{A}) \text{ and } \operatorname{CSP}(\mathbb{A}^{[d]}) \text{ are "the same" (up to pp-interpretation)}$$

$$\mathbb{E}_{A} \xrightarrow{A} \mathbb{A}^{[d]}$$

$$\mathbb{E}_{A \text{ is } A}[d]$$

$$\mathbb{S}^{[d]}$$
 for fin. $\mathbb{S} \leq \mathbb{A}$

$$\mathbb{A} \to \mathbb{A}^{[d]}$$

$$\mathbb{A}^{[d]}_{/\mathrm{Aut}(\mathbb{B})}$$

•
$$\operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^d$$

$$\mathbb{S}^{[d]} \text{ for fin. } \mathbb{S} \leq \mathbb{A}$$

$$\mathbb{S}^{[d]} \text{ for fin. } \mathbb{S} \leq \mathbb{A}$$

$$\bullet \operatorname{Pol}(\mathbb{A}^{[d]}) = \operatorname{Pol}(\mathbb{A}) \curvearrowright A^{d}$$

$$\bullet \operatorname{CSP}(\mathbb{A}) \text{ and } \operatorname{CSP}(\mathbb{A}^{[d]}) \text{ are "the same" (up to pp-interpretation)}$$

$$\bullet \operatorname{If} \mathbb{A} \text{ is } \begin{pmatrix} \omega \operatorname{-categorical} \\ \operatorname{homogeneous} \\ \operatorname{finitely bounded} \\ \operatorname{a reduct of } \mathbb{B} \end{pmatrix}, \text{ then } \mathbb{A}^{[d]} \text{ is } \begin{pmatrix} \omega \operatorname{-categorical} \\ \operatorname{homogeneous} \\ \operatorname{finitely bounded} \\ \operatorname{a reduct of } \mathbb{B}^{[d]} \end{pmatrix}$$

$$\mathbb{A}^{[d]}$$

$$\mathbb{A}$$

$$\left(\mathbb{Q};<\right)_{/\mathrm{Aut}((\mathbb{Q};<))}^{[3]}=\left\{\left[\left(\begin{smallmatrix}0\\0\\0\end{smallmatrix}\right)\right],\left[\left(\begin{smallmatrix}1\\0\\0\end{smallmatrix}\right)\right],\left[\left(\begin{smallmatrix}2\\1\\0\end{smallmatrix}\right)\right],\left[\left(\begin{smallmatrix}1\\1\\0\end{smallmatrix}\right)\right],\left[\left(\begin{smallmatrix}0\\1\\0\end{smallmatrix}\right)\right],\ldots\right\}$$

A reduct of linearly ordered fbh \mathbb{B} , $Pol(\mathbb{A})$ preserves \neq

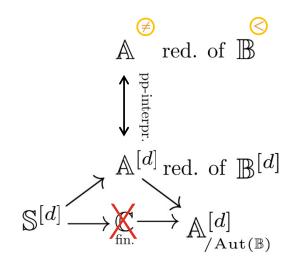
 $\mathbb{S}^{[d]}$ for fin. $\mathbb{S} \leq \mathbb{A}$

$$\mathbb{A} \to \mathbb{A}^{[d]}$$

$$\mathbb{A}^{[d]}_{/\mathrm{Aut}(\mathbb{B})}$$

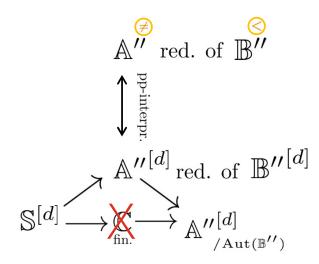
Proposition

- $\mathbb{A}^{[d]}$ is a cheese for $PCSP(\mathbb{S}^{[d]}, \mathbb{A}^{[d]}_{/Aut(\mathbb{B})})$;
- \exists finite tractable cheese



Proposition

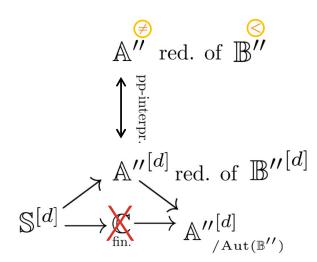
- $\mathbb{A}''^{[d]}$ is a cheese for $PCSP(\mathbb{S}''^{[d]}, \mathbb{A}''^{[d]}_{/Aut(\mathbb{B}'')});$
- \exists finite tractable cheese



 \mathbb{A} red. of \mathbb{B}

Proposition

- $\mathbb{A}''^{[d]}$ is a cheese for $PCSP(\mathbb{S}''^{[d]}, \mathbb{A}''^{[d]}_{/Aut(\mathbb{B}'')});$
- ∄ finite tractable cheese

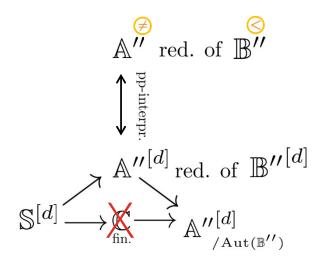


 \mathbb{A} red. of \mathbb{B}

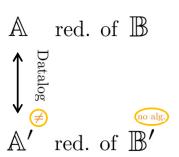
Theorem (Removing algebraicity) From the first part.

Proposition

- $\mathbb{A}''^{[d]}$ is a cheese for $PCSP(\mathbb{S}''^{[d]}, \mathbb{A}''^{[d]}_{/Aut(\mathbb{B}'')});$
- ∄ finite tractable cheese

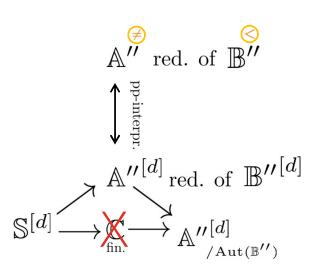


Theorem (Removing algebraicity) From the first part.



Proposition

- $\mathbb{A}''^{[d]}$ is a cheese for $PCSP(\mathbb{S}''^{[d]}, \mathbb{A}''^{[d]}_{/Aut(\mathbb{B}'')});$
- ullet $\not\exists$ finite tractable cheese



Theorem (Removing algebraicity) From the first part.

A red. of B

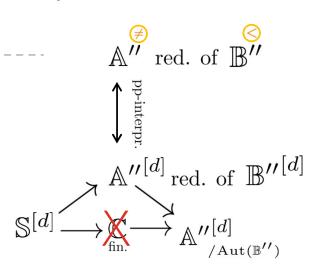
A red of B'

A' red of B'

Generic superposition $\mathbb{B}' * (\mathbb{Q}; <)$: Possible since \mathbb{B}' has no algebraicity.

Proposition

- $\mathbb{A}''^{[d]}$ is a cheese for $PCSP(\mathbb{S}''^{[d]}, \mathbb{A}''^{[d]}_{/Aut(\mathbb{B}'')});$
- \exists finite tractable cheese



Theorem (Removing algebraicity) From the first part.

Generic superposition $\mathbb{B}' * (\mathbb{Q}; <)$: Possible since \mathbb{B}' has no algebraicity.

Proposition

- $\mathbb{A}''^{[d]}$ is a cheese for $PCSP(\mathbb{S}''^{[d]}, \mathbb{A}''^{[d]}_{/Aut(\mathbb{B}'')});$
- ullet $\not\exists$ finite tractable cheese

